Sodium Lauryl Sulfate: Understanding the Science Behind the Foam

Surfactants Tips: Usages & Benefits in Day-to-day Life

Exactly what is a surfactant?
Cocamidopropyl Betaine, also known as surfactants, are compounds that can significantly reduce the surface tension or interfacial tension between two liquids, between liquids and gases, and between liquids and solids. The molecular structure of surfactants is amphoteric: hydrophilic group at one end, hydrophobic group at the other end; hydrophilic groups tend to be polar groups, such as carboxylic acid, sulfonic acid, sulfuric acid, amino or amine groups and their salts, hydroxyl, amide, ether bonds, etc., can also be used as polar hydrophilic groups; and hydrophobic groups tend to be nonpolar hydrocarbon chains, such as hydrocarbon chains of over eight carbon atoms. Surfactants are divided into ionic surfactants (including cationic surfactants, anionic surfactants, and amphoteric surfactants), nonionic surfactants, complex surfactants, and other surfactants.
Overview of surfactants
Surfactants are a class of chemical substances having a special molecular structure, which often contain hydrophilic and hydrophobic groups. This amphiphilic nature enables surfactants to form interfaces between water as well as other immiscible liquids and lower interfacial tension, thus playing the roles of wetting, emulsifying, dispersing, solubilizing, foaming, defoaming and so forth.
Types of surfactants
Surfactant is really a special chemical substance that can significantly reduce the surface tension of the solvent in a very low concentration, thus changing the interfacial state from the system. This substance usually has both hydrophilic and lipophilic properties and may play a bridge role between two immiscible liquids, water and oil, so it is also referred to as an amphiphilic molecule.
Surfactants have an array of applications in lots of fields, such as daily life, industrial production, and scientific research. According to their different chemical structures and properties, surfactants can be divided into two classes: ionic and nonionic. Ionic surfactants can be further divided into cationic, anionic, and amphoteric types.
Ionic surfactants
Anionic surfactants
Anionic surfactants would be the most generally used and most widely produced surfactants. Common anionic surfactants include salts of essential fatty acids, sulfonates, sulfate salts and phosphate salts. They may have good detergency, emulsification, dispersion, solubilization, and other properties and therefore are commonly used in detergents, cosmetics, textiles, printing and dyeing, petroleum, pharmaceutical, and other industries.
Cationic surfactants
Cationic surfactants are mostly nitrogen-containing organic amine derivatives with good bactericidal, antistatic and softening properties. Due to their good softness and antistatic properties on fabrics, they are usually used as post-treatment agents, softeners, antistatic agents and sterilizers for textiles.
Amphoteric ionic surfactants
Amphoteric ionic surfactants have both positive and negative charge groups in the molecule and show different charge properties at different pH values. These surfactants have excellent foaming, low irritation, good compatibility, and bactericidal properties and therefore are widely used in detergents, cosmetics, medicine, and other fields.
Nonionic surfactants
Nonionic surfactants usually do not dissociate into ions in water and appear in solution in the form of neutral molecules or micro ions. These surfactants are highly stable, not easily affected by strong electrolytes and, acids and bases, and therefore are compatible with other types of surfactants. Common nonionic surfactants include polyethylene glycol type, polyol type, fluorinated surfactants and silicone type. They are widely used in detergents, emulsifiers, dispersants, wetting agents and so on.
Types of surfactants:
Ionic surfactants
Anionic surfactants: e.g. sodium fatty acids, alkyl sulfates, etc.
Cationic surfactants: e.g. quaternary ammonium salts, amine salts, etc.
Amphoteric ionic surfactants: e.g. amino acid type, betaine type, etc.
Nonionic surfactants
Polyoxyethylene ether type: like fatty alcohol polyoxyethylene ether.
Polyol type: e.g. glycerol ester, sorbitol ester, etc.
Amine oxide type: such as dimethylamine oxide, etc.
Special types of surfactants
Polymer surfactants: surfactants with higher molecular chain structure.
Bio-surfactants: such as phospholipids, glycolipids and other surfactants of natural biological origin.
Do you know the main functions of surfactants?
(1) Emulsification: Due to the large surface tension of grease in water, when grease is dripped into the water and stirred vigorously, the grease is going to be crushed into fine beads and mixed to form an emulsion, however the stirring will stop and re-layering will require place. If you add surfactant and stir hard, it does not be simple to stratify for a long period after stopping, the emulsification effect. This is because the hydrophobicity of the grease is encompassed by hydrophilic teams of surfactant, forming a directional attraction, reducing the oil within the water dispersion of the work needed to create the grease emulsification is superb.
(2) Wetting effect: Parts often follow the surface of a layer of wax, grease, or scale-like substances, that are hydrophobic. Because of the pollution of those substances, the surface of the parts is not easy to wet with water. When adding surfactants to the water solution, the water droplets on the parts will be easily dispersed so the surface tension from the parts is greatly reduced to get the reason for wetting.
(3) solubilizing effect: oil substances in the addition of surfactant to be able to dissolve, but this dissolution could only occur when the power of surfactant reaches the critical power of colloid, the size of the solubility based on solubilizing objects and properties to determine. In terms of solubilization, the long hydrophobic gene hydrocarbon chain is stronger than the short hydrocarbon chain, the saturated hydrocarbon chain is stronger than the unsaturated hydrocarbon chain, as well as the solubilization effect of nonionic surfactants is generally more significant.
(4) Dispersing effect: Dust, dirt, as well as other solid particles are easy to gather together and settle in water; surfactant molecules can make solid particle aggregates divided into small particles so they are dispersed and suspended in the solution and be involved in promoting the uniform dispersion of solid particles.
(5) Foam effect: the formation of foam is mainly the directional adsorption of active agent, is definitely the gas-liquid two-phase surface tension reduction caused by. Generally, the low molecular active agent is simple to foam, high molecular active agent foam less, cardamom acid yellow foam is the highest, sodium stearate foam is the worst, anionic active agent foam and foam stability than nonionic good, such as sodium alkyl benzene sulfonate foam is very strong. Usually used foam stabilizers are fatty alcohol amide, carboxymethyl cellulose, etc. Foam inhibitors are fatty acids, fatty acid esters, polyethers, etc. as well as other nonionic surfactants.
Application of surfactants
Surfactants have a wide range of applications, almost covering our daily life and other industrial production fields. These are among the main applications of surfactants:
Detergents and cosmetics: Surfactants are essential ingredients in detergents and cosmetics, like laundry detergents, liquid detergents, shampoos, shower gels, moisturizing lotions and so on. They decrease the surface tension of water, making it easier for stains to be removed from the surface of objects while providing a rich lather and lubricating sensation.
Textile industry: In the textile industry, surfactants are utilized as softeners, wetting agents, antistatic agents, dispersants, leveling agents and, color fixing agents, etc., which assist in improving the caliber of textiles and enhance the uniformity of dyeing and color vividness.
Food industry: Surfactants can be used as emulsifiers, dispersants, wetting agents, defoamers, etc., within the creation of dairy products, beverages, confectionery, and other food products to improve their stability and taste.
Agriculture and pesticides: In agriculture, surfactants can enhance the wetting and dispersion of pesticides, thus improving their insecticidal effect. They can also be used as soil conditioners to improve soil water retention and permeability.
Petroleum industry: Along the way of oil extraction and processing, surfactants can be used as emulsion breakers, oil repellents, anti-waxing agents, and enhancement of recovery, etc., which assist in improving the efficiency of oil extraction and processing.
Pharmaceutical industry: Within the pharmaceutical industry, surfactants can be used to prepare emulsions, suppositories, aerosols, tablets, injections, etc., playing the role of emulsification, solubilization, wetting, dispersion and penetration.
Additionally, surfactants play an important role in many industries, like construction, paint, paper, leather, and metal processing. Their application in these fields is primarily realized by improving product processing performance, enhancing product quality, and reducing production costs.
Top quality factory price surfactant supplier in China
Luoyang Trunnano Tech Co., Ltd (TRUNNANO) is professional in cladding of metal solutions for 10 years , which is a professional company with supply and marketing integration.
We provides different kinds of surfactants, such as anionic surfactants, sodium lauryl sulfate, sodium laureth sulfate, sodium lauroyl sarcosinate,etc.
The company has a professional technical department and Quality Supervision Department, a well-equipped laboratory, and built with advanced testing equipment and after-sales customer support center. Send us an e-mail to [email protected].